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Abstract 

Cost estimation is an essential part of every drilling 

project's well planning, and it involves predicting 

the rate of penetration (ROP) accurately. The ROP 

represents the amount of time required to drill a 

given depth, and maximizing it helps minimize the 

costs associated with the drilling budget. However, 

predicting the ROP accurately is challenging 

because it depends on numerous variables, 

including drilling parameters, drilling fluid 

properties, and drilled formation characteristics. 

One approach to improving the accuracy of ROP 

prediction is by using machine learning techniques, 

such as gradient boosting. In a recent study 

conducted in the Rumaila oilfield, the researchers 

used gradient boosting to predict the ROP based on 

drilling operation parameters and drilling fluid 

properties for two wells used for training and testing 

and one well used for implementation. The results 

of the study showed that gradient boosting was 

successful in predicting the ROP, with R2 training 

and testing values of 0.9947 and 0.8611, 

respectively. This means that the model was highly 

accurate and could be used to improve cost 

estimation in drilling projects. 

Overall, the use of machine learning techniques 

such as gradient boosting can help enhance the 

accuracy of cost estimation in drilling projects by 

predicting the ROP more accurately, minimizing the 

costs associated with the drilling budget, and 

improving the overall efficiency of the drilling 

process.  
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 Introduction 

Intricate drilling is the process of removing numerous types of rocks to reach the desired depth, the most crucial 

aspects in drilling that affects cost is penetration rate, often known as drilling speed. The length of time required 

to drill the well has the potential to significantly increase drilling expenses, [1]. Thus, one of the most important 

goals of drilling engineers is to reduce drilling time, [2-4]. The rate at which penetration occurs (ROP) is the 

main variable influencing drilling time, [5].  

Rate of penetration (ROP) refers to the amount of rock or formation a drill bit can cut in a specific unit of time. 

Various factors such as mud properties, formation properties, depth, torque, WOB, RPM, Q, and SPP affect 

ROP. Optimal adjustments of these variables can enhance drilling efficiency and minimize expenses. It is 

essential to consider all these factors to ensure that drilling operations are successful and profitable, [6-10]. Some 

of these aspects, such as the formation features (porosity and lithology), are uncontrollable, while others, such as 

torque, weight on bit (WOB), rotation speed (RPM), and flow rate, are controllable. Most factor that affects the 

drilling rate is shown in figure 1. 

There have been numerous attempts to model ROP using mathematical equations and statistical techniques, but 

they have been unsuccessful due to the great complexity of the ROP model or issues that can arise when results 

are generated in the lab or using insufficient field data, [3,11,12]. The goal of this work is to present research for 

ROP prediction in the southern Iraqi oil field of Rumaila using an intelligent model. ROP was determined by an 

intelligent model, which also demonstrated the consequences of different drilling parameters as well as its 

dependability and limitations. 

Rumaila oil field is a supergiant oilfield that was discovered in 1953 contain two domes (south and north). The 

field is roughly located between latitudes 47° 14' and 47° 19' and longitudes 30° 13' and 30° 24'.  Around 50 

kilometers to the west of Basra city, on an area of 1800 km2 as shown in figure 2, [13,14]. The South of Rumaila 

field building was constructed in 1953 and placed into use in 1954. The Lower Cretaceous Zubair sandstone 

(Main Pay) was the intended focus. The North dome was then drilled in 1959, and it was discovered that the 

Main Pay and Mishrif carbonate, both from the middle Cretaceous, are the most prolific reservoirs, while the 

sandstone below was wet, [15]. 

       1.1. Review 

Intelligent models have gained more and more attention in recent years for its accuracy in calculating various 

drilling issues. In order to forecast ROP, Ahmed investigated the propensity of four widely utilized 

computational intelligence techniques (ANN, ELM, support vector regression (SVR), and least square support 

vector regression (LSSVR)), [17]. Shi in 2016 made use of upper-layer solution-aware techniques and extreme 

learning machines (ELM) to successfully forecast the ROP, [18]. Artificial neural networks (ANNs) were used 

by Azar in 2017 to build the ROP model, and the results showed how effective ANNs are as a tool for cutting 

costs, speeding up processes, and boosting structural reliability, [19]. 

Also, researchers are working on developing a ROP model utilizing the random forest technique, including the 

input characteristics RPM, WOB, flow rate, and uniaxial compressive strength (UCS), [20]. Bodaghi created the 

ROP model in 2015 using support vector regression that was enhanced by the Cuckoo search method and genetic 

algorithm, [21]. Hegde constructed a number of models based on the formation and contrasted them with data-

driven models. Their conclusion demonstrates that data-driven models perform better, [22]. The application of 

several machine learning algorithms by the authors to forecast ROP while drilling in a specific formation has 

been informative, [23]. 

And though, in order to predict the rate of penetration (ROP) in drilling operations, artificial neural networks 

were developed and trained with four evolutionary techniques for accurate forecasting [24]. Regression issues 

have been widely addressed using the RBF neural network by authors, [25]. In 2020, Doaa developed a neural 

network model to forecast the rate of penetration for an Iraqi oil field. The model incorporated various 

parameters, including well depth, drilling fluid input, bit rotation speed, weight on bit, standpipe pressure, and 
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bit size. The model's accuracy was evaluated based on its ability to estimate the rate of drilling penetration. The 

results showed that the neural network model provided excellent accuracy in predicting the rate of penetration. 

This forecasting tool could potentially benefit the oil and gas industry by optimizing drilling operations and 

reducing costs, [26]. As a result of early convergence, the PSO method is prone to being caught in local 

optimization, [27]. Due to its straightforward form and straightforward implementation, a nature-inspired 

optimization method has also attracted significant research attention, [28]. 

 

Figure 1: The most paramount factor that affects ROP. 
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Figure 2: The location map provides a visual representation of the area of study, including geographical 

features, boundaries, and key landmarks [16]. 

        1.2. Gradient Boosting 

Gradient Boosting is an ensemble machine learning technique that combines multiple weak models to form a 

strong predictive model. It has gained popularity due to its ability to handle various data types and its 

customizability. The method involves iteratively adding new models to the ensemble and minimizing a loss 

function, such as mean squared error or binary cross-entropy, through gradient descent. Gradient Boosting can 

be used for classification, regression, and ranking problems, [29-31]. Gradient Boosting can be used for both 

Classification and Regression. 
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Basically, Gradient Boosting involves three elements, [32,33]: 

1- A weak learner is a machine learning model that has modest predictive power, but is useful for building more 

complex models. Decision trees are a popular choice for weak learners in gradient boosting, although other 

models can also be used. The goal is to iteratively improve the ensemble by adding weaker learners [34]. 

2- A loss function is a crucial element in machine learning that determines how well the model fits the data. By 

minimizing the error, it helps in achieving better accuracy. Different types of loss functions are used for various 

purposes, such as regression and classification tasks. 

3- A sequence of models, where each new model focuses on correcting the mistakes of the previous models. 

Gradient boosting is a popular form of boosting algorithm that uses gradient descent optimization to minimize 

the loss function. Boosting is often used in machine learning for tasks such as classification and regression. 

When building predictive models, it's important to account for the possibility of incorrect predictions. By giving 

greater weight to incorrect predictions, we can train models that are better able to handle difficult cases and 

make more accurate predictions overall. One technique that can be used to accomplish this is gradient boosting. 

This involves training a sequence of models, each of which is designed to improve upon the predictions of the 

previous model. The process works by gradually reducing a loss function, which measures the error between the 

predicted values and the actual values. Overall, the goal of gradient boosting is to minimize the loss function, 

just as in an artificial neural network model where weights are tuned to minimize the error between predicted 

and actual values. By giving greater weight to difficult cases and focusing on improving the accuracy of our 

models over time, we can build better predictive models that are more effective at handling complex data sets 

and making accurate predictions, [32,35 ,36]. 

The predictions of many models are integrated in gradient boosting, as opposed to neural network models, where 

the goal is to minimize a loss function in a single model. Gradient boosting thereby makes use of some of the 

random forest/extra tree hyperparameters as well as other hyperparameters like learning rate, loss function, etc. 

that are utilized in an ANN model, [37-40]. 

 

 

Figure 3: A schematic illustration of gradient boosting regression [39]. 

1. Methodology  

Data gathering: data were collected of oil wells that were drilled in the Rumaila oil field, which included factors 

related to the drilling operation and the characteristics of the drilling fluid table 1. Figure (4) shows the 

relationships between the rate of penetration and the other parameters that were used in modeling. 
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Table 1: The import data using in this study.  

index count mean min max 

TVD(m) 4866 1257.96 43.5 2471.2 

WOB(ton) 4866 6.637 0.01 20.72 

RPM(rpm) 4866 85.11 20.0 135.0 

TORQUE(lb*ft) 4866 4911.23 664.0 10077.0 

SPP(psi) 4866 1413.143 217.0 2144.0 

FLWpumps(l/mn) 4866 2608.83 1225.0 4039.0 

MW(gm/cc) 4866 1.112 1.04 1.21 

Pump(spm) 4866 70.52 14.0 98.0 

ECD(gm/cc) 4866 1.142 1.01 1.29 

BIT SIZE(inch) 4866 12.534 8.5 17.5 

ROP(m/hr) 4866 15 1.31 81.55 
 

 

Figure 4: Scatterplots ROP Vs input parameters. 
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      2.1. Model development 

Gradient Boosting is a popular machine learning algorithm that can be used for regression tasks. In Python, we 

can import the Gradient Boosting Regressor library from the Scikit-Learn package to build and train our model. 

The Gradient Boosting Regressor is an ensemble model that combines the predictions of multiple decision trees 

in order to improve accuracy. 

Gradient Boosting Regressor (GBR) is a powerful machine learning algorithm used for regression problems. It 

has several hyperparameters that can be tuned to optimize the model's performance. The number of estimators 

refers to the number of trees in the forest, and increasing this hyperparameter can improve the model's accuracy 

but can also lead to overfitting. The learning rate determines the size of the step taken during each sequential 

iteration, affecting the convergence rate and the model's ability to generalize. Choosing the appropriate loss 

function, such as mean squared error or mean absolute error, can also enhance the model's performance by 

minimizing the errors between predicted and actual values. 

In addition to these hyperparameters, there is also the criterion hyperparameter which is used to measure the 

quality of a split. The default criterion in the Scikit-Learn Gradient Boosting Regressor is the mean squared 

error, but other criteria such as the mean absolute error or the Huber loss can also be used. 

To obtain the best performance from the Gradient Boosting Regressor, we can use techniques such as grid search 

or trial and error to find the optimal hyperparameters. For example, we can use grid search to test different 

combinations of hyperparameters and evaluate the performance of each combination using cross-validation. 

Table 2 shows an example of the best hyperparameters that can be used to build a Gradient Boosting Regressor 

model: 

Table 2: The best hyperparameters that used in study. 

Hyperparameters The best choice Description 

Loss Squared error Optimization function 

Learning rate 0.05 learning rate ranges from 0 to 1 and represents the rate of 

adjustment of weights and the speed of learning. 

n estimators 100 The number of trees 

criterion MSE The function for determining a split's quality. 

Min. samples split 4 To split an internal node, the minimal number of samples 

is necessary. 

Min. samples leaf 4 The bare minimum of samples that must be present at a 

leaf node. 

Max. depth None The tree's greatest depth. 
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2. Results and Discussion 

After completing data preparation and feature engineering, our model was trained using 10 scaled predictors 

including TVD(m), WOB(ton), RPM(rpm), TORQUE(lb*ft), SPP(psi), FLWpumps(l/mn), MW(gm/cc), 

Pump(spm), ECD(gm/cc), BIT SIZE(inch), and ROP(m/hr). Our dataset consisted of 4866 data samples, as 

shown in Table 1. 

To ensure accurate model performance, we split our data into a 70% training set and a 30% test set. Next, we 

optimized the model's hyperparameters, including the gradient boosting method's hyperparameters, using 

GridSearchCV in Python. This approach allowed us to select the optimal values for the hyperparameters and 

improve the model's predictive power. 

Once the hyperparameters of a model are optimized, the next step is to train and test it using a certain percentage 

of the available data. In this case, 70% of the data was used for training, and the remaining 30% for testing. The 

obtained R2 values of 0.9947 and 0.8611 for training and testing, respectively, indicate that the model has 

acceptable performance. Interestingly, the model is more accurate in predicting ROP in the lower range, 

indicating better performance in deeper formations where ROP is typically higher. These results demonstrate the 

effectiveness of the model in predicting ROP. 

Figure (7) illustrates the successful implementation of a trained model to estimate the rate of penetration for a 

new well. This marks a significant milestone in the field of well drilling optimization. 

 

 
Figure 5: Actual and predicted ROP for training data. 
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Figure 6: Actual and predicted ROP for testing data. 
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Figure 7: Actual and predicted ROP for the new well. 
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3. Conclusion  
 

The following conclusions may be made based on the findings from the previous section:  

 

The Gradient Boosting (GB) model was developed to forecast the Rate of Penetration (ROP) in Rumaila oilfield 

based on drilling operation parameters and drilling mud properties. The model was trained and tested on two 

wells, with one well used for implementation. The GB model achieved high accuracy in predicting ROP, 

especially in deeper formations, with an R2 value of 0.8611. Overall, the model demonstrated significant 

potential for optimizing drilling operations in the oil and gas industry. 
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