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Abstract 

CO2 injection has proven to be one of the most successful EOR 

(Enhanced Oil Recovery) methods, as compared with other injection 

gases CO2 miscibility with oil is easier to achieve. During gas injection 

into reservoirs, oil might be bypassed on either a micro- or 

macroscopic scale because of different types of heterogeneities. In this 

work, the performance of first-contact-miscible (FCM) and immiscible 

(IM) CO2 injections were investigated experimentally using outcrop 

sandstone core samples. Decane was also used as the hydrocarbon 

phase as it has a relatively low minimum miscibility pressure (MMP) 

with CO2 (12.4 MPa). Core flooding experiments were conducted at 

two pressures of 17.2 MPa and 9.6 MPa and the common temperature 

of 343 K. Furthermore, analytical calculations of dimensionless 

numbers are used to study the dominant forces and mechanisms which 

are correlated with the results of the core flooding experiments. The 

impacts of gravity, swelling and vaporization on the end results were 

inferred from the oil recoveries, variations in the pore pressure and 

dimensional analysis. For CO2 injection in homogeneous core samples, 

a maximum recovery of 93.5% and 76% was achieved for the FCM 

and IM displacements, respectively. The higher recovery results of 

FCM is attributed to the vanishing capillary pressure between 

displacing and displaced phases. Dimensional analysis showed that the 

flow is at the capillary-gravity equilibrium at immiscible conditions, 

while there is dominance of gravity-viscous forces at miscible 

conditions. 
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1. Introduction 
The investigation into the use of CO2 flooding for enhanced oil recovery (EOR) began in the early 1950’s [1-3] 

and has since been considered as one of the most efficient EOR methods. Furthermore, injecting CO2 has 

captured more interest in the recent years as it can help to reduce CO2 gas emissions [4-18]. Various studies have 

been performed to improve the understanding of CO2 flow through porous media [19-29]. However, the 

efficiency of a CO2 EOR greatly depends on whether the in-situ displacement occurs under immiscible, near-

miscible, or miscible conditions.  

 

1.1. Effect of Miscibility    

In an immiscible (IM) flooding process, the high-density difference between injected CO2 and oil and high-

mobility ratio can lead to poor macroscopic sweep efficiency by promoting viscous fingering and gravity 

segregation, keeping the recovery factor low [30-32]. It is also widely acknowledged that improving the 

microscopic and/or macroscopic sweep efficiencies is the key for the success and effectiveness of any EOR 

technique [33]. 

The CO2 miscibility with the in-situ oil is achieved if the flooding pressure is higher than the so-called minimum 

miscibility pressure (MMP) under reservoir conditions. The interactions between CO2 and oil at high pressures 

(higher than MMP) are much stronger than those at low pressures [34, 35]. When miscibility between the 

injected gas and oil is achieved a high recovery factor may result. Miscible gas injection generally results in a 

higher microscopic displacement efficiency by lowering the interfacial tension (IFT) between the oil and CO2, 

causing oil swelling and lowering the oil viscosity and density [34-36]. The above effects are mainly due to the 

mass transfer that takes place in a miscible CO2 displacement [37]. 

 

1.2. Dimensionless analysis 

Dimensionless analysis has been found to be a powerful tool for better understanding of the effects of 

simultaneous phenomena that may occur during fluid flow in a porous medium [38-40]. In other words, 

combining the experimental results with dimensionless calculations can assist in indicating the dominant 

recovery mechanisms and relative significance of active forces (i.e. capillary, viscous and gravitational) during a 

miscible or an immiscible flooding process. Described below are some of the commonly used dimensionless 

parameters used to characterise multiphase displacements in the porous media.  

As outlined by (1), the capillary number [41], describes the relationship between viscous and capillary 

forces. 

                                                 (1) 
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where,    is the Darcy velocity (m/s),   is the viscosity of displacing phase (Pa s) and IFT is the interfacial 

tension between the displacing and displaced fluids (N/m). The capillary number is of the order of about 10
-7

 for 

common immiscible fluid injections [39]. 

The bond number [39] is a measure of the ratio of gravity to capillary forces and is quantified by (2). 

                                                 
       (2) 

where,    is the density contrast between displacing and displaced fluids (kg/m
3
),   is the gravity constant 

(m/s
2
) and    is the hydraulic diameter of pores (m). The bond number is in the order of about 10

-4
 for common 

immiscible flooding processes [39]. 

The gravity number [42] is used to quantify the ratio between the gravity and viscous forces as defined by (3). 

                                                     (3) 

 In addition to those reviewed so far, Zhou et al. (1994) [43] introduced other dimensionless numbers to 

describe fluid flow at the core-scale level. As defined by these researchers, the relative magnitude of capillary to 

viscous forces can be estimated from the following relationship: 

                                                         
     (4) 

where,    is the average permeability (m
2
),    is the capillary pressure (Pa) and   is the sample or reservoir 

length (m). When     varies between 0.2 and 5.0, capillary and viscous forces are of the same order of 

magnitude. If it is above 5.0 or below 0.2 that the capillary or viscous forces are dominant, respectively [43]. 

Similarly, Zhou et al. (1994) [43] define the ratio of capillary to gravity force using (5). 

                                                          (5) 

where,    is the reservoir or sample thickness (m) and    is the density difference between displaced and 

displacing fluids (kg/m
3
).  

The same researchers expressed that the ratio of gravity to viscous force is with     that can be estimated using 

(6). 

                                                                (6) 

This research is aimed at providing a better understanding of the displacement mechanisms during miscible 

and immiscible CO2 injection and how they may influence the ultimate oil recovery. For this purpose, we have 

performed a series of core-flooding experiments under two different pressure conditions, one above and another 

below MMP of the CO2 into decane as the fluid system of interest. We have also demonstrated how the 
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calculations of dimensionless numbers at the pore- and core-scale levels may be used to determine the dominant 

forces and mechanisms during the flooding experiments. 

2. Experimental Approach 

2.1. Core Flooding Equipment    

A moderate pressure and temperature core flooding facility was built for the CO2 flooding experiments planned. 

The flow diagram of the experimental setup is shown in (Fig.  1). The setup consisted of a hydrostatic type core 

holder (69 MPa and 473 K rated) and three Teledyne Isco syringe pumps (69 MPa rating) used for controlling 

confining and pore pressure. A high pressure N2 cell was also used to control the back pressure which was 

applied using a doma-loaded backpressure regulator (BPR) during the experiments. Two 316 stainless steel 

transfer cylinders were used for storing and injecting decane and CO2, while the synthetic formation brine was 

injected directly using a syringe pump. Two absolute pressure transducers (Omega Engineering, PX309-2KG5V) 

were installed on the inlet and outlet of the core-holder for differential pressure measurement. Experiments were 

conducted at 343 K and two pressures of 17.23 MPa and 9.65 MPa to ensure experiments were representative of 

first contact miscible (FCM) and IM reservoir conditions (the MMP between decane and CO2 is 12.4 MPa at 

343 K as reported by (Shaver et al., 2001 and  Georgiadis et al., 2010). 

 

Fig. 1. Schematic drawing of core flooding apparatus 

 

2.2. Experimental material 

High purity CO2 (99.9 wt%, BOC Gases), n-Decane (99%, Sigma–Aldrich), and a synthetic brine consisting 

of 2% NaCl, 0.7% KCl, 0.5% CaCl2.H2O, (all in weight%, ACS grade, Sigma– Aldrich) dissolved in distilled 

water, were used in the experiments. Two outcrop sandstone samples (Upper Gray Berea) each with a length of 

7.65 cm, diameter of 3.81 cm and 100 md of permeability were used as the porous medium. The fluid properties 

under different experimental conditions applied are provided in Table 1.  

 

P (MPa) 

CO2
* 

Decane
* 

IFT
** 

(mN/m2) ρ (kg/m
3
) 

μ 
 (cp) 

ρ (kg/m
3
) 

μ  

(cp) 

Table 1. Fluid properties under various pressures 
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 2.3. Experimental material 

Before each core-flooding experiment, a core plug was cleaned in a temperature controlled Dean-Stark apparatus 

using warm methanol and toluene (50% each) and then dried in a vented oven at 343 K for 24 hours or until its 

weight stabilized. Then, the core sample was wrapped with a layer of FEP heating shrinkage tube, and placed in 

a Viton sleeve (this layer was required to prevent any CO2 diffusion and damage to the Viton sleeve). 

Subsequently, the sleeve containing the sample was installed into the core-holder (placed horizontally). In the 

next step, the confining pressure was set at 17.23 MPa, while the core sample was vacuumed to 7 × 10
-4

 psi over 

12 hours. The brine flooding was then started to saturated the core sample and apply the pore pressure, while the 

confining pressure was gradually increased to 34.47 MPa by maintaining a net value of 17.23 MPa between the 

overburden pressure and pore pressure. After fully saturating the core sample (placing the system under a 

constant pore pressure of 13.78 MPa for 6 hours or until pore pressure became stable) the brine permeability was 

measured. Subsequently, about five pore volumes (PV) of decane were injected at 5 mL/min (i.e. a capillary 

number of < 10
-4

) to achieve connate water saturation (Swc). Eventually, CO2 was injected at a flow rate of 0.5 

cc/min (determined using the [44] criterion of        , where L is the core length (m), v is the flow velocity 

(m/s), and µ is the viscosity of the displacing fluid(Pa s)). In addition, the volume of decane collected for each 

PV of CO2 was recorded. The flooding was continued till 2-2.5 PV’s of CO2 were injected. 

 

      

3. Results and Discussion 

3.1. Core Flooding Experiments 

We performed two different CO2 injection tests each at a different pressure (one below and another above the 

MMP of CO2 into decane at 343 K) on homogeneous core samples to determine the influence of miscibility and 

active forces at the pore- and core-scale on the oil recovery. Decane recoveries of 93.5% and 76% were achieved 

for the miscible and immiscible displacements, respectively. Fig. 2 shows the dynamic decane recovery of both 

experiments versus PV’s of CO2 injected. As can been seen, the recovery during immiscible displacement grows 

faster during the times leading to CO2 breakthrough. One reason for this behaviour is the faster flow of gas 

inside the core sample during immiscible injection which takes place through the preferential paths (i.e. flow 

fingers) that present the least resistance to flow [45]. For instance, the injected CO2 invades the larger pores first 

[41] pushing the oil towards the production side of the core. On the other hand, a continuous mixing process 

9.65 233 0.022 700.9 0.545 3.55 

17.23 590 0.045 707.7 0.591 0 
* 
NIST Chemistry WebBook, SRD 69, 2017. 
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(vaporisation and condensation) would take place between fluid phases under miscible conditions giving rise to a 

more uniform displacement front and a delay in CO2 breakthrough. After CO¬2 breakthrough, not much decane 

can be recovered in the case of immiscible flooding but for miscible condition, decane is recovered with a 

relatively moderate rate even after breakthrough contributing towards a higher eventual recovery (Fig. 2). The 

main cause of this behaviour is that during the immiscible displacement, once the preferential flow paths are 

established and breakthrough occurs, due to the dominance of capillary forces, not much additional oil may be 

recovered. In the case of the miscible flooding however, the capillary forces do not exist resulting in an eventual 

recovery close to 100%. Moreover, the measured pressure data during the tests (Fig.3) indicate lower differential 

pressures during the miscible displacement, which is due to the vanishing interfacial tension under miscible 

conditions, but two phase flow occurs during the immiscible flooding where capillary forces are active giving 

rise to higher differential pressures. 

 

 

Fig. 2. Dynamic recovery at different miscibility conditions 

 

 

Fig. 3. Dynamic record of differential pressure 

3.2. Core Flooding Experiments 

Combining the result of the displacement experiments with dimensionless calculations can assist in 

determining the dominant recovery mechanisms and relative significance of likely active forces during the 

displacements. The calculated values of the capillary, bond and gravity numbers for our experiments are 

presented in Table 2. The hydraulic diameter used in calculating these parameters was calculated according to 
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the technique proposed by Epstein (1989) [46]. As can be seen from Table 2, under immiscible conditions (pore 

pressure of 9.65 MPa), the capillary and bond numbers are within the expected range for flooding experiments as 

reported in the literature (Capillary number is about 10
-7

 and the bond number is about 10
-2

) [39]. As the IFT 

approaches zero under the miscible conditions (pore pressure of 17.23 MPa) these numbers grow toward the 

critical point (i.e. infinity).  

At the core-scale level [46], the capillary pressure was calculated for our experiments using a history 

matching technique conducted using the Sendra software package (Weatherford Petroleum Consultants). Then 

corresponding values of     ,     and     (as defined by equations 4, 5 and 6) were calculated (Table 3) 

providing insights as to which forces would dominant during each of the two experiments. For instance, under 

immiscible conditions, during the first stage of flooding, under the effect of capillary and viscous forces CO2 

invades the larger pores first but as the injection continues the gravity forces may become more pronounced and 

the CO2 moves preferentially into the least resistance paths [41]. On the other hand, the absence of the capillary 

forces during miscible displacement would lead to the dominance of viscous forces during the flood as well as 

the existence of a non-negligible effect of gravity forces. 

Table 2. Pore- scale 

dimensionless calculations 

 

 

 

 

Table 3. Core-scale dimensionless calculations 

P (MPa)             

9.65 2.94E+00 1.32E+01 2.23E-01 

17.23 0 0 5.18E-02 

 

 

4. Conclusions 

To investigate and demonstrate the relative importance of active forces during CO2 flooding, two 

experiments were conducted under miscible and immiscible conditions. In addition, dimensionless analysis was 

implemented at the pore- and core-scale to complement the results of the experiments. The following 

conclusions can be drawn upon combining the results of the experimental tasks and analytical investigations: 

 As expected, a higher recovery was achieved from the first-contact-miscible test. This higher recovery is 

attributed to the vanishing interfacial tension between CO2 and decane as well as the reduced density 

contrast between the two fluids. 

P (MPa)          

9.65 2.25E-07 5.21E-02 2.82E+00 

17.23 Infinity Infinity 3.46E-01 
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 Before the CO2 breakthrough, a higher oil production rate was achieved for the case of immiscible CO2 

displacement. This is attributed to the fast advancement of gas through the preferential flow paths that 

provide the least resistance to flow. In the miscible flood however the continuous vaporization and 

condensation of the fluid phases leads to a more stable displacement front and more gradual oil recovery 

even after breakthrough. 

 Analytical calculations of dimensionless numbers revealed the existence of a capillary-gravity drive 

under immiscible conditions, while the gravity-viscous forces are dominant under miscible conditions.  
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