

Iraqi Journal of Oil & Gas Research

Journal homepage: https://ijogr.uotechnology.edu.iq/

The Impact of Completion Technology on Flow Dynamics and Pressure Behaviors of Horizontal Wells

¹ Salam Al Rbeawi^{*}, ² Fadhil Sarhan Kadhim

¹ METU Northern Cyprus Campus

² University of Technology-Iraq

Article information

Article history: Received: July, 21, 2021 Accepted: October, 4, 2021 Available online: October, 8, 2021

Keywords: Completion techniques, Pressure behaviour, well test analysis

*Corresponding Author: Salam Jabbar Hussain Al Rbeawi salam@metu.edu.trm

Abstract

Horizontal wells with multiple completion parts have become a common completion technique in the oil and gas industry. Sand and asphalt production problems, damaged zones and water cresting or gas coning are the main reasons for using this technique to sustain or improve oil and gas recovery. However, using such completion technique introduces negative effects on pressure behavior of horizontal wells. This paper introduces new mathematical models for horizontal well containing several closed completed sections acting in finite and infinite reservoirs. These models can be used to evaluate the impact of the completion techniques on both pressure behaviors and flow regimes either in the vicinity of wellbore or at the outer boundary of reservoirs. They can be used also to investigate the change in productivity index that would result due to the usage of certain type of completion technique. In this research, the completed sections (cemented or isolated parts) and the places where packers are installed are considered as no-flow sections. These sections are expected to increase pressure drop required for flowing reservoir fluid toward wellbore. They are also expected to change flow regimes mainly in the vicinity of wellbore. Several models have been developed and solved in this study for different completion techniques, wellbore conditions and reservoir configuration. It has been found that the great impact of completion techniques is observed on flow regimes that commonly develop in the drainage area close to wellbore. This impact shows similar trends to the skin factor. Several new flow regimes have been observed, one of them has been developed due to the existence of closed completed sections which is intermediate or second radial flow regime. This flow regime can be found for some cases of long wellbore having multi-short perforated sections. The study will introduce the mathematical models for known and newly developed flow regimes for horizontal well including the completion technique.

DOI: xxxxxxxxxxxxxxxxx ©2021, Department of Petroleum Technology, University of Technology-Iraq This is an open access article under the CC BY 4.0 license (xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx)

1. Introduction

The main functions of oil and gas wells completion are to deliver the hydrocarbons from the sand face to the surface during production process and to deliver the injected fluid from the wellbore to the formation during the

injection process. However, the completion techniques are designed for different primarily and important functions such as: protection production tubing from formation pressure, protection casing from the erosion might be caused by well fluids, controlling production rates for multi-layers' formation, monitoring permanently the downhole pressure, and facilitate the future developing plans for the stimulation and enhancement process. It is well known that the selection of appropriate completion techniques undergoes several considerations such as reservoir consideration (production zones isolation, distance from fluid contacts, secondary target, minimum zone separation, and length interval), mechanical consideration, and safety consideration.

Up to the moment, three options of wellbore- reservoir interference are used to determine the selected type of single zone completion techniques. Open hole completion, often called "barefoot completion", is the first option in which the wellbore is left with no-casing in the production zone. This option is preferable for no-cost demand, but it does not provide the operators great opportunity for future reservoir management to reduced unwanted water production for example. The positive thing, it is possible to convert this completion technique in the future to a linear completion. The second option is the uncemented linear completion, shown in Fig. (1), where the slotted pipes, wire wrapped screens, and open hole gravel packs are typically installed. The formations in these completion techniques are supported by the slotted linear, wrapped sand screens or gravel packed. Third option is the perforated completion techniques which are most commonly used all over the world due to the high flexibility, considerable safety, and reasonable cost. Three groups are classified within the perforated completion techniques standard perforated casing or linear as shown in Fig. (2), fracture stimulation, and cased hole gravel pack.

Figure 1: (a) Uncemented slotted linear.

(b)(b) Slotted screen pipe.

Figure 2: Cemented perforated linear.

For multiple zones formation as shown in Fig. (3), four options of completion techniques are available. They are commingled production, sequential zonal production, single-string multi-zone segregated production, and multi-string multi-zone segregated production. Recently, as the horizontal wellbores are drilled for tens of thousands feet, the completion techniques become more complicated. Multi-segments completion techniques have been adopted for long and extra-long horizontal wells where the mechanical yield torque can be big challenge in addition to the production problems such as sand production. For example, three segments-completion techniques have been used for developing Nahr Umr sandstone formation in Qatar [1].

Even though the completion techniques are common applications in petroleum industry as excellent remedies for several expected production problems, they have in the other hand significant impact on producing wells performance. This impact can be seen on pressure behaviors, flow regimes, and productivity index. For all types of completion technique except the open hole, there are closed sections along the wellbore represent real resistant for reservoir fluids to freely flow from the drainage area toward the wellbore. Therefore, the fluid may enter the wellbore at various section and different flow rate which is in turn leads to create non-symmetrical pressure behavior along the wellbore [2]. Moreover, this would cause some changes in the flow regimes in the vicinity of the horizontal wellbore. Accordingly, well performance and productivity index are definitely negatively affected by changes in both pressure behavior and flow regime. Ouyang and Huang 2005 and Denney 2006 explained that mechanical skin factor is closely related to the completion technique [3][4]. Additionally, turbulent flow resulted from narrowing the cross section area of flow may lead to increase the skin factor [5]. Several papers have been presented in the last years showed the impact of the completion techniques of horizontal wells on the pressure behavior and flow regime. Furui et al 2005 presented a comprehensive skin – factor model of horizontal well completion performance. They concluded that the interaction among the damage and skin factor caused by the perforation or slots are shown to greatly affect horizontal well completion performance [6]. This fact has been confirmed by Yildiz 2006 who investigated the impact of selectively perforated horizontal well on productivity. He showed that the productivity ratio of selectively completed wells increases with the increasing of the length of completed segments [7].

Figure 3: Multilateral completion system.

2. Mathematical Models

The impact of the completion techniques on horizontal well performance can be reasonably expressed by investigating the changes that are typically occurred for pressure responses and flow regimes due to the existence of closed sections in completed segments of the wellbore. The closed sections in the slotted linear, uncemented segment linear, cased cemented and perforated linear in addition to the existence of packers, as shown in Fig. (4), may have great influences on fluid influx to the wellbore. The flow rate of reservoir fluid, entering the wellbore, depends on the surface contact area given by the wellbore circumference and length. For open hole completion, the maximum surface contact area is obtained, while this area is reduced for other completion techniques because of the closed sections in the completed segments. Al-Rbeawi and Tiab 2013 indicated the impact of the damaged sections and closed perforated zones on pressure behaviors and flow regimes for horizontal wellbores. They stated that the main impact can be observed when reservoir fluids reach closely to the wellbore. At this point, these fluids tend to move toward the small resistance sections of the completed zones i.i.e. the open sections such as the slots and perforations [8].

Considering the closed sections of the completion system as no-flow zones, the horizontal wellbore can be divided into two zones. The first one is the open zones where reservoir fluids flow freely into the wellbore, while the second one is the closed zones where no fluids enter the wellbore [9]. Therefore, the pressure response in this case can be simulated using some necessary assumptions such as: 1), the reservoir is homogenous and having

constant and uniform thickness with two impermeable layers at the top and bottom of the formation. 2) Constant porosity in each direction, but the formation is anisotropic. 3) Gravitational and frictional effects are negligible, 4) Wellbore storage effect is not considered, and 5) There is no fluid flow at the boundaries. Accordingly, the pressure behavior, in dimensionless units, of horizontal well has wellbore length($2L_W$), shown in Fig. (5), extends in finite reservoir having rectangular shape drainage area (Length ($2x_e$), width ($2y_e$)) and the formation height is (h), can be written as:

Figure 4: Horizontal well completion.

$$P_{D} = \frac{\pi y_{eD}}{4nL_{PD}} \int_{0}^{t_{D}} \left[\sum_{m=1}^{m=n} \sum_{N=1}^{N=\infty} \left\{ \left(erf\left(\frac{x_{D} - x_{WD} - (m-1)(L_{PD} + L_{CD}) - 2N/x_{eD}}{2\sqrt{\tau_{D}}} \right) - erf\left(\frac{x_{D} - x_{WD} - mL_{PD} - (m-1)L_{CD} - 2N/x_{eD}}{2\sqrt{\tau_{D}}} \right) \right] + \left(erf\left(\frac{x_{D} + x_{WD} - (m-1)(L_{PD} + L_{CD}) - 2N/x_{eD}}{2\sqrt{\tau_{D}}} \right) - \frac{1}{2\sqrt{\tau_{D}}} \right) = \frac{1}{2\sqrt{\tau_{D}}} \left(\frac{x_{D} - x_{WD} - mL_{PD} - (m-1)L_{CD} - 2N/x_{eD}}{2\sqrt{\tau_{D}}} \right) - \frac{1}{2\sqrt{\tau_{D}}} \left(\frac{x_{D} - x_{WD} - mL_{PD} - (m-1)L_{CD} - 2N/x_{eD}}{2\sqrt{\tau_{D}}} \right) - \frac{1}{2\sqrt{\tau_{D}}} \right) = \frac{1}{2\sqrt{\tau_{D}}} \left(\frac{x_{D} - x_{WD} - mL_{PD} - (m-1)L_{CD} - 2N/x_{eD}}{2\sqrt{\tau_{D}}} \right) - \frac{1}{2\sqrt{\tau_{D}}} \left(\frac{x_{D} - x_{WD} - mL_{PD} - (m-1)L_{CD} - 2N/x_{eD}}{2\sqrt{\tau_{D}}} \right) - \frac{1}{2\sqrt{\tau_{D}}} \right) = \frac{1}{2\sqrt{\tau_{D}}} \left(\frac{x_{D} - x_{WD} - mL_{PD} - (m-1)L_{CD} - 2N/x_{eD}}{2\sqrt{\tau_{D}}} \right) - \frac{1}{2\sqrt{\tau_{D}}} \left(\frac{x_{D} - x_{WD} - mL_{PD} - (m-1)L_{CD} - 2N/x_{eD}}{2\sqrt{\tau_{D}}} \right) - \frac{1}{2\sqrt{\tau_{D}}} \left(\frac{x_{D} - x_{WD} - mL_{PD} - (m-1)L_{CD} - 2N/x_{eD}}{2\sqrt{\tau_{D}}} \right) - \frac{1}{2\sqrt{\tau_{D}}} \left(\frac{x_{D} - x_{WD} - mL_{PD} - (m-1)L_{CD} - 2N/x_{eD}}{2\sqrt{\tau_{D}}} \right) - \frac{1}{2\sqrt{\tau_{D}}} \left(\frac{x_{D} - x_{WD} - mL_{PD} - mL_{$$

$$y_{WD} \Big\} * \Big\{ 1 + 2 \sum_{N=1}^{N=\infty} e^{-N^2 \pi^2 L_D^2 \tau_D} \cos(N \pi z_{WD}) \cos(N \pi (z_D L_D + y_{WD})) \Big\} d\tau_D$$
(1)

Figure 5: Completion technique for horizontal well in finite reservoir.

While the impact of the closed sections in the completed segments on productivity index of horizontal wells can be represented by reducing the length of the wellbore and surface area of contact between wellbore and drainage area. The models for the productivity index are as follows [10]:

$$J = \frac{c}{[c_{HF} + S_P + S_m]}$$
(2)
$$C = \frac{\sqrt{k_x k_z} (2y_e)}{141.2 \,\mu B}$$
(3)

Where;

Mechanical skin factor in the Eq. (2) is represented by the term , while the term represents the pseudo-skin factor. Pseudo-skin factor represents the resistance to flow resulted from different resources such as the reduction of the wellbore length due to the completion techniques, horizontal wells partially penetrate the formation in the horizontal plan, and the eccentricity and assymetricity of the horizontal wells in the vertical plan. Pseudo-skin factor can be obtained as follows:

$$S_{p} = \pi x_{eD} L_{D} \left\{ \begin{aligned} \frac{64}{\pi^{3} y_{eD}} \sum_{n=l,m=l,l=l}^{\infty} \frac{1}{m(n^{2} x_{eD}^{2} + m^{2} y_{eD}^{2} + 4l^{2} L_{D}^{2})} \sin(m\pi \frac{y_{eD}}{2}) \cos(m\pi \frac{y_{wD}}{2}) \cos(\frac{m\pi}{2} (y_{D} y_{eD} + y_{wD})) \\ \cos(n\pi \frac{x_{wD}}{2}) \cos(\frac{n\pi}{2} (x_{D} x_{eD} + x_{wD})) \cos(l\pi z_{wD}) \cos(l\pi (z_{D} L_{D} + z_{wD})) \\ + \frac{32}{\pi^{3} y_{eD}} \sum_{m=l,l=l}^{\infty} \frac{1}{m(m^{2} y_{eD}^{2} + 4l^{2} L_{D}^{2})} \sin(m\pi \frac{y_{eD}}{2}) \cos(m\pi \frac{y_{wD}}{2}) \cos(\frac{m\pi}{2} (y_{D} y_{eD} + y_{wD})) \\ + \frac{16}{\pi^{2}} \sum_{n=l,l=l}^{\infty} \frac{1}{(n^{2} x_{eD}^{2} + 4l^{2} L_{D}^{2})} \cos(n\pi \frac{x_{wD}}{2}) \cos(\frac{n\pi}{2} (x_{D} x_{eD} + x_{wD})) \\ + \frac{2}{\pi^{2} L_{D}^{2}} \sum_{l=l}^{\infty} \frac{1}{l^{2}} \cos(n\pi z_{wD}) \cos(n\pi (z_{D} L_{D} + z_{wD})) \\ + \frac{2}{\pi^{2} L_{D}^{2}} \sum_{l=l}^{\infty} \frac{1}{l^{2}} \cos(n\pi z_{wD}) \cos(n\pi (z_{D} L_{D} + z_{wD})) \end{aligned} \right\}$$

It is easy to infer from the above mentioned model that the pseudo-skin factor depends mainly on the effective length of the horizontal wellbore (L_D), the length of the open sections, for the same reservoir configuration. As the effective length increases, the pseudo-skin factor decreases which is in turn causes increasing in the productivity index of the horizontal wells given in Eq. (2) knowing that the shape factor is unique value for specific reservoir configuration as shown below:

_

$$C_{HF} = \pi x_{eD} L_D \begin{bmatrix} \frac{32}{\pi^3 y_{eD}} \sum_{n=1,m=1}^{\infty} \frac{1}{m(n^2 x_{eD}^2 + m^2 y_{eD}^2)} \sin(m\pi \frac{y_{eD}}{2}) \cos(m\pi \frac{y_{wD}}{2}) \cos(\frac{m\pi}{2} (y_D y_{eD} + y_{wD})) \\ \cos(n\pi \frac{x_{wD}}{2}) \cos(\frac{n\pi}{2} (x_D x_{eD} + x_{wD})) + \frac{8}{\pi^2 x_{eD}^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \cos(n\pi \frac{x_{wD}}{2}) \cos(\frac{n\pi}{2} (x_D x_{eD} + x_{wD})) \\ + \frac{16}{\pi^3 y_{eD}^3} \sum_{m=1}^{\infty} \frac{1}{m^3} \sin(m\pi \frac{y_{eD}}{2}) \cos(m\pi \frac{y_{wD}}{2}) \cos(\frac{m\pi}{2} (y_D y_{eD} + y_{wD})) \end{bmatrix}$$
(5)

3. Pressure Analysis

The pressure behavior resulting from the depletion process with time represented by the mathematical model given in Eq. (1) is highly affected by the length of the wellbore. Therefore, the reduction in the effective length of the horizontal well or the length of open sections where reservoir fluids freely flow toward the wellbore causes reasonable change in the pressure. The effective length is shortened mainly by the existence of closed completed sections where no fluids can enter the wellbore from these sections.

For short horizontal wells fully penetrate the formation in the horizontal plan as shown in Fig. (6), the impact of completion techniques on pressure response can be noticed in both early time and late time production. This impact increases with increasing the length of closed sections because of increasing the pseudo-skin factor. Similar behaviors are observed for short horizontal wells that partially penetrate the formation in the horizontal plan as shown in Fig. (7). However, the impact of completion techniques in late time production is clearer in the partially penetrated formation rather than fully penetrated formation. Physically, for fully penetrated formation. pressure pulse does not need for long time to reach the boundary no matter the length of the perforated sections. While it takes some time for the pressure pulse to reach the boundary in partially penetrated formation.

For moderate and long horizontal wellbore, the impact of completion technique is mainly observed in the early time of production for both fully or partially penetrated formations. This is true as the boundary dominated flow can be developed in short time. Fig. (8) shows the pressure response for fully penetrated formation by moderate length horizontal wells while Fig. (9) represents the pressure response for moderate length horizontal wells partially penetrating the formations in the horizontal plan. For all cases, the change in pressure drop caused by the completion techniques in early time of production is proportional with the reduction percentage in wellbore length caused by closed completed sections. Mathematically, the effective length of the wellbore or the length of perorated sections can be represented by the ratio of the pressure derivative for the horizontal well with closed completed section and the well with no closed sections.

1.0E+1

1.0E+0

1.0E-1

1.0F-2

1.0E-4

Po & (toxPo')

D=50.0%

lnD=25.0%

1.0E-3

1.0E-2

1.0E-1

to

Figure 9: Pressure response for moderate length

horizontal wells partially penetrating the formation.

1.0E+0

1.0E+1

1.0E+2

4. Impact of Closed Completed Section

1.0E+1

1.0E+0

1.0E-1

1.0F-2

1.0E-4

Po & (toxPo')

nD=50.0%

.oD=25.0%

There is no significant impact for the number of closed completed sections on pressure response of horizontal wells as shown in Fig. (10) and (11). This would be explained as the physical restriction for reservoir fluids to flow from the vicinity of the wellbore into the wellbore itself does not change with the number of closed completed section. The restriction is caused by the change in the length of perforated sections. However, for short horizontal wells as shown in Fig. (10), the big number of perforated sections may need smaller pressure drop rather than small number. This is because of the fact that the spreading perforated sections along the wellbore may lead to similar behavior of the wellbore without closed completed sections.

Figure 10: Pressure response for short horizontal wells Figure 11: Pressure response for long horizontal wells.

5. Flow Regimes

For open hole completion where there are no closed completed sections, the expected flow regimes that can be developed during the entire production time are: early radial flow, linear flow, pseudo-radial flow and boundary dominated flow (late linear) if the wells extend in finite acting reservoirs. For infinite acting reservoirs, boundary dominated flow regime cannot be reached and only early radial flow, linear flow, and pseudo-radial flow are expected to occur as shown in Fig. (12). For both finite and infinite acting reservoirs, elliptical flow may develop through the transition from early linear flow to pseudo-radial flow. Intermediate or second radial flow regime may also develop for the cases of short perforation sections and long closed sections.

Figure 12: Flow regimes for open hole completed horizontal wells in infinite acting reservoirs.

Early Radial Flow Regimes:

This flow regime develops at early time when reservoir fluids flow radially toward the wellbore in the vertical plan normal to the horizontal well as shown in Fig. (13). It is characterized as a horizontal line having constant pressure derivative value on the log-log plot of dimensionless time and dimensionless pressure derivative. It can be written as follows:

$$(\boldsymbol{t}_{\boldsymbol{D}} * \boldsymbol{P}_{\boldsymbol{D}}')_{\boldsymbol{E}\boldsymbol{R}} = \frac{0.5}{2n \, L_{PD} L_{D}} \tag{6}$$

Where (n) is the number of the open and perforated sections in the horizontal well. In field units:

$$(\Delta P)_{ER} = \frac{162.6q\mu B}{\sqrt{k_z k_y n L_P}} \log(t) + C$$
(7)

Where (C) is taken as the pressure drop at the bottom hole after one hour of production (ΔP_{1hr}) . Then the following model is applicable:

$$\Delta P_{1hr} = \frac{162.6 \, q\mu B}{2nL_p \sqrt{k_y k_z}} \left[log \left(\frac{k_x}{\phi \mu c_t L_w^2} \right) - 3.227 + 0.868 s_R \right]$$
(8)

 s_R represents skin factor resulting from the early radial flow which most likely includes the mechanical skin factor and the impact of the completion techniques. This impact might be considered as a reduction in the free wellbore length opens to reservoir fluids or reduce the open perimeter of the wellbore.

Early radial flow regime continues untill pressure pulse reaches the upper and lower impermeable boundaries. The elapsed time for early radial flow depends on the height of the formation and the permeability in the vertical direction. However, for long horizontal wells, this time is shorter than the time required to reach the boundary for short horizontal wells. Commonly for long and extra long hroizontal wells ($L_D \ge 20$) early radial flow regime may not be seen and only early linear and pseudo-radial flow can be noticed for wells acting in infinite reservoirs [11].

Figure 13: Early radial flow regime.

Early Linear Flow Regimes:

Early linear flow regime develops shortly after the pressure pulse reaches the upper and lower boundaries. In this flow regime, reservoir fluids move linearly in the horizontal plan from the two sides of the wells toward the wellbore as shown in Fig. (14). This flow is typically characterized by slope of (0.5) on pressure derivative curves. The governing equations are as follows:

Figure 14: Linear flow to horizontal well.

$$(\boldsymbol{t}_{\boldsymbol{D}} * \boldsymbol{P}_{\boldsymbol{D}}')_{\boldsymbol{LF}} = \frac{\sqrt{\pi t_{\boldsymbol{D}}}}{2nL_{\boldsymbol{PD}}}$$
(9)

In field unit:

$$(\Delta P)_{LF} = \frac{2.032 \ qB}{nL_p h} \sqrt{\frac{\mu t}{k_y \phi c_t}} + C \tag{10}$$

(C) can be determined from the straight line of pressure derivative for linear flow intermediate time data at (t = 1.0 hr) as follows:

$$\boldsymbol{C} = \frac{(nL_p)h}{4.064qB} \sqrt{\frac{k_y \emptyset c_t}{\mu}} \Delta \boldsymbol{P}_{1hr}$$
(11)

Then:

$$s_L = C - \log\left(\frac{h}{L_w}\right) - 0.25\log\left(\frac{k_y}{k_z}\right) + 1.6$$
(12)

Elliptical Flow Regime

Elliptical flow regime may develop for moderate and long length wellbores during the transition from early linear flow to pseudo-radially flow for the cases where the reservoir boundaries are long enough to create ellipsoid drainage area as shown in Fig. (15). This flow regime is characterized by slope of (0.36) on pressure derivative curves as shown in Fig. (16). It is described by the following model [12]:

$$(t_D * P'_D)_{ELF} = \frac{1}{54000} \left(\frac{(hx_e)}{(L_w r_w)}\right)^{0.72} t_D^{0.36}$$
(13)

In field units:

$$(\Delta P)_{ELF} = \frac{q\mu B}{2675\sqrt{k_y k_x h}} \left(\frac{k_x}{\phi \mu c_t}\right)^{0.36} \left(\frac{h x_e}{r_w L_w^2}\right)^{0.72} t_D^{0.36} + \frac{141.2q\mu B}{\sqrt{k_x k_y h}} s_{elf}$$
(14)

Figure 15: Elliptical flow regime in horizontal well.

Figure 15: Elliptical flow & Boundary-dominated regime in horizontal wells.

Intermediate (second) Radial Flow Regime:

Intermediate or second radial flow regime represents fluid flow radially in the horizontal plan toward each

perforated section as shown in Fig. (17). This flow regime develops for the cases of short perforation sections and long closed sections. It is characterized by horizontal line on pressure derivative curves equals to (0.5/n) as shown in Fig. (18). It is described by the following models:

$$(\boldsymbol{t}_{\boldsymbol{D}} * \boldsymbol{P}_{\boldsymbol{D}}')_{\boldsymbol{I}\boldsymbol{R}\boldsymbol{F}} = \frac{0.5}{n} \tag{15}$$

In field units:

$$(\boldsymbol{t} * \Delta \boldsymbol{P}')_{IRF} = \frac{70.6 \ q\mu B}{\sqrt{k_x k_y h}} \tag{16}$$

Figure 17: Intermediate (second) radial flow regime.

Figure 18: Intermediate (second) radial flow regime for horizontal wells.

Pseudo-Radial Flow Regime:

Late or pseudo-radial flow is the most common type of flow regimes takes place for infinite acting reservoirs and finite acting reservoirs with large drainage area. It is characterized by horizontal line of constant pressure derivative value equals to (0.5). This flow regime describes the radial flow in the horizontal plan toward the hole wellbore including perforated and closed sections as shown in Fig. (19). Mathematically, it is defined as:

$$(t_D * P'_D)_{PR} = 0.5 \tag{17}$$

In field units:

$$(\boldsymbol{t} * \Delta \boldsymbol{P})_{\boldsymbol{P}\boldsymbol{R}} = \frac{70.6 \, q\mu B}{\sqrt{k_x k_y h}} \tag{18}$$

Figure 19: Pseudo-radial flow regime.

Boundary Dominated (Late linear) Flow Regime:

This flow develops when the pressure pulse reaches the outer boundaries of the reservoir. It is characterized by slope of (1.0) for both pressure and pressure derivative curve as shown in Fig. (15). It is described by the following models [13]:

$$(\Delta P)_{LL} = \frac{4.064 \ qB}{hx_e} \sqrt{\frac{\mu t}{k_y \phi c_t}} + \frac{141.2 \ q\mu B}{\sqrt{k_y k_z} L_w} s_t \tag{19}$$

Where: (s_t) is the total skin factor.

6. Productivity Index

Mathematically, the productivity index is defined as the production capacity of the sand face that can be obtained from (1.0) psi pressure drop. For a constant production rate, the pressure drop at any point in the formations depends on several parameters: permeability, homogeneity, isotropy, formation drainage area configuration, reservoir fluid properties, and wellbore length. The production rate and the pressure drop at the wellbore are the two items required for estimating the instantaneous productivity index using the model:

$$J = \frac{q}{\Delta P} \tag{20}$$

(21)

However, for pseudo-steady state, the productivity index of horizontal wells can be estimated using the model given in Eq. (2). Eq. (2) can be written as follows:

$$J = C * J_D$$

Where: J_D is the dimensionless productivity index obtained from.

From Figs. (20), (21), (22), and (23), it can be seen that the productivity index decreases as the length of closed section increases. This fact can be explained by increasing the pressure drop required for the same production rate because of increasing the restrictions to fluid flow due to the reduction in the wellbore length resulted from the existence of closed completed sections. The impact of the length of closed sections on productivity index can

Figure 20: Productivity index for short horizontal wells. Figure 21: Productivity index for short horizontal wells.

7. Well Test Analysis

Well test analysis is typically used as an excellent tool for reservoir characterization. However, great attention should be given to the existence of the closed completed sections when the reservoir is characterized by well test analysis. The reason for that is the change in pressure behaviors and flow regimes due to these sections. The characterization process depends on the developed flow regimes in the test which is in turn depends on the time duration of the test. For short time well test, early radial flow regime may develop only after the wellbore-storage dominated flow regime. While pseudo-radial flow regime or boundary dominated flow regime may need for long time well test to be noticed.

Early Radial Flow Regime:

From early radial flow regime data, the characterization procedure can be achieved as follows: 1. From the horizontal line of the pressure derivative obtained by the log-log plot of time and pressure derivative, the value of pressure derivative can be used to calculate the following permeability term:

$$\sqrt{k_z k_y} = \frac{35.3 q \mu B}{(nL_p)(t * \Delta P')_{ER}}$$
(23)

2. Using the slope (m) of the straight line obtained from the semi-log plot of time and pressure for early time data, the permeability term mentioned above can be checked as follows:

$$\sqrt{k_z k_y} = \frac{81.3 q \mu B}{(nL_p)m} \tag{24}$$

3. From the intercept point (C) of the same plot mentioned above, the skin factor resulted from early linear flow can be obtained from the following model:

$$s_{R} = 1.1515 \left[\frac{(nL_{p})\sqrt{k_{y}k_{z}}}{161.2q\mu B} \Delta P_{1hr} - \log\left(\frac{k_{x}}{\phi\mu c_{t}L_{w}^{2}}\right) + 3.227 \right]$$
(25)

Early Linear Flow Regime:

Early linear flow regime data (intermediate time data) can be analyzed as follows:

1. Using the straight line obtained from the log-log plot of time and pressure derivative of linear flow data, the pressure drop corresponding to (t = 1.0 hr) can be determined.

2. The following model is applicable:

$$k_{y} = \left(\frac{2.032qB}{(nL_{p})h\Delta P_{1hr}}\sqrt{\frac{\mu}{\emptyset c_{t}}}\right)^{2}$$
(26)

Then (k_z) can be determined from the permeability term obtained by Eq. (23).

$$\boldsymbol{k}_{z} = \frac{\left(\sqrt{k_{z}k_{y}}\right)^{2}}{k_{y}} \tag{27}$$

3. The permeability (k_y) can be determined also from the slope of the straight line obtained from the plot of (\sqrt{t}) vs. pressure drop as follows:

$$k_{y} = \left(\frac{4.064qB}{(nL_{p})hm}\sqrt{\frac{\mu}{\emptyset c_{t}}}\right)^{2}$$
(28)

While the intercept of the straight line with (t = 1.0 hr) can be used to check the permeability (k_v) as follows:

$$(\Delta \boldsymbol{P})_{LF} = \frac{4.064 \ qB}{(nL_p)h} \sqrt{\frac{\mu t}{k_y \phi c_t}} + \frac{(nL_p)h}{4.064 \ qB} \sqrt{\frac{k_y \phi c_t}{\mu}} \Delta \boldsymbol{P}_{1hr}$$
(29)

The intersection time between early linear flow regime line and early radial flow regime line is useful in the interpretation process as follows:

$$k_z = \frac{302h^2 \phi \mu c_t}{(t_{int})_{LF-ER}} \tag{30}$$

Similarly, the intersection point between early linear flow regime and pseudo-radial flow regime is used as follows:

$$k_{x} = \frac{1207(nL_{p})^{2}\phi\mu c_{t}}{(t_{int})_{LF-PR}}$$
(31)

and the intersection point between early linear flow regime and intermediate (second) radial flow regime is used as follows:

$$k_{x} = \frac{1207(L_{p})^{2} \phi \mu c_{t}}{(t_{int})_{LF-IR}}$$
(32)

Pseudo-Radial Flow Regime:

The interpretation of pseudo-radial flow regime data can be used in checking the value of horizontal permeability as follows:

$$\sqrt{k_{\chi}k_{y}} = \frac{70.6q\mu B}{h(t*\Delta P')_{PR}}$$
(33)

Accordingly:

$$\boldsymbol{k}_{\boldsymbol{x}} = \frac{\left(\sqrt{k_{\boldsymbol{x}}k_{\boldsymbol{y}}}\right)^2}{k_{\boldsymbol{y}}} \tag{34}$$

Intermediate (Second) Radial Flow Regime:

The data of this flow regime is used to calculate the number of closed completed section or perforated sections. This regime indicates the flow of fluid toward each individual perforated section in case of long horizontal well having long closed completed sections. The following model can be used for this purpose:

$$n = \frac{70.3q\mu B}{\sqrt{k_x k_y} h(t^* \Delta P')_{IRF}}$$
(35)

Elliptical Flow Regime:

For the cases where the elliptical flow regime is observed, either the outer boundaries of the reservoir or the permeabilities can be checked using the data of this flow regime. Eq. (14) can be used for this purpose.

Boundary Dominated (Late Linear) Flow Regime:

For finite acting reservoirs, the pressure pulse may reach the boundaries. Accordingly, boundary dominated flow or late linear flow characterized by slope of (1.0) for both pressure and pressure derivative curves is observed. The data of this flow regime can be used to estimate the boundaries using Eq. (19).

Conclusions

1- Even though, the completion techniques are good practices for some of the prospective production problems, they have some impact on pressure behaviors, flow regimes, and productivity index of horizontal wells acting in finite and infinite reservoirs.

2- The impact of completion techniques is represented by the existence of closed completed section (cemented, isolated, and packers) along the horizontal wellbore that do not allow for reservoir fluids to enter in the wellbore.

3- The impact depends on the length of the closed completed sections. However, there is no significant impact for the number of closed completed sections.

4- Intermediate (second) radial flow has been noticed due to the existence of the closed sections. single.

Nomenclature:

- B Formation volume factor, rbbl/STB
- ct Reservoir total compressibility, psi⁻¹
- h Reservoir thickness, ft
- kx Reservoir permeability in the X-direction, md
- ky Reservoir permeability in the Y-direction, md
- kz Reservoir permeability in the Z-direction, md
- Lw Half wellbore length, ft
- Lp Length of perforated section, ft
- Lc Length of closed completed section, ft
- n Number of perforated sections
- P'_D Pressure derivative
- ΔP Pressure drop, psi
- q Flow rate, STB/D
- s Skin factor
- t Time, hrs
- ϕ Porosity
- μ Viscosity, cp
- ER Early radial flow
- IR Intermediate radial flow
- PR Pseudo radial flow
- LF Linear flow
- LLF Boundary dominated or late linear flow
- ELF Elliptical flow

List of Symbols:

$$x_D = \frac{x - x_w}{L_w}$$
$$y_D = \frac{y - y_w}{L_w} \sqrt{\frac{k_x}{k_y}}$$
$$z_D = \frac{z - z_w}{L_w} \sqrt{\frac{k_x}{k_z}}$$
$$z_w D = \frac{z_w}{h}$$

$$z_{D}^{-} = \frac{z - z_{w}}{h} = z_{D}L_{D}$$
$$L_{D} = \frac{L_{w}}{h}\sqrt{\frac{k_{z}}{k_{x}}}$$
$$L_{pD} = \frac{L_{p}}{L_{w}}$$
$$L_{cD} = \frac{L_{c}}{L_{w}}$$
$$P_{D} = \frac{2\pi\sqrt{k_{x}k_{y}}h\Delta P}{q\ \mu}$$

References

- I. Abbasy, B. Ritchie, M. Pitts, B. White and M. R. Jaafar, "Challenges in Completing Long Horizontal Wells Selectively," *SPE Drilling and Completion Journal*, vol. 25, no. SPE-116541-PA, pp. 199-209, doi:10.2118/116541-PA, 2010.
- [2] T. Yula, E. Ozkan, K. Mohan, C. Sarica and Y. Turhan, "Performance of Horizontal Wells Completed with Slotted Liners and Perforations," SPE-65516 paper presented at the 2000/SPE –CIM international conference on horizontal well technology held in Calgary, Alberta, Canada. doi: 10.2118/65516-MS, 2000.
- [3] L. B. Ouyang and W.S. B. Huang Ouyang, "A Comprehensive Evaluation of Well-Completion Impacts on the Performance of Horizontal and Multilateral Wells," SPE- 96530, Paper presented at the 2005 SPE annual technical conference and exhibition held in Dallas, Texas, USA, doi:10.2118/SPE-96530, 2005.
- [4] D. Denney, "Well-Completion Effects on the Performance of Horizontal and Multilateral Wells," *Journal of Petroleum Technology*, pp. 75-77, doi:10.2118/0906-0075-JPT, 2006.
- [5] Y. Tang, T. Yildiz, E. Ozkan and M. G. Kelkar, "Effects of Formation Damage and High-Velocity Flow on the Productivity of Perforated Horizontal Wells," *SPE reservoir evaluation and engineering journal*, vol. 8, SPE-77534-PA, pp. 315-324. doi:10.2118/77534-PA. 2005.
- [6] K. Furui, D. Zhu and A.D. Hill, "A Comprehensive Model of Horizontal Well Completion Performance," SPE Production and Facilities, vol. 20, no. SPE-84401-PA, pp. 207-220, doi:10.2118/84401-PA. 2005
- [7] T. Yildiz, "Productivity of Selectively Perforated Horizontal Wells," SPE production and operation, vol. 21, no. SPE-90580-PA, pp. 75-80, doi: 10.2118/90580-PA, 2006.
- [8] S. Al-Rbeawi and D. Tiab, "New application for well test analysis: Locating closed perforation zones and damaged sections" *Journal of Petroleum Science & Engineering*, 11 (2013), pp. 59-70. doi: 10.1016/j.petrol.2013.08.035, 2013.
- [9] S. Al-Rbeawi and F. S. Kadhim, "The impact of hydraulic flow unit & reservoir quality index on pressure profile and productivity index in multi-segments reservoirs," *Petroleum*, vol. 3, Issue 4, pp. 414-430, 2017.
- [10] J. F. Owayed, S. Al Rbeawi and D. Tiab, "Easy technique for calculating productivity index of horizontal wells," *Journal of Engg. Research*, vol. 1, pp. 335-358, 2013.
- [11] S. Al Rbeawi and D. Tiab, "Transient Pressure Analysis of Horizontal Wells in a Multi-Boundary System," *American Journal of Engineering Research (AJER)*, vol. 2 Issue (4), pp. 44-66, 2013.
- [12] F. H. Escobar and M. Montealegre, "Conventional Analysis for the Determination of the Horizontal Permeability from the Elliptical Flow of Horizontal Wells," SPE-105928 paper presented at the SPE 2007 production and operation symposium held in Oklahoma City, OK, USA, SPE-105928-MS, doi:10.2118/105928-MS, 2007.
- [13] P. A. Goode and R. K. M. Thambynayagam, "Pressure Drawdown and Buildup Analysis of Horizontal Wells in Anisotropic Media," *SPE Formation Evaluation*. vol. 2, pp. 683-697, doi:10.2118/14250-PA, 1987.